Single-step One-pot Synthesis of TiO2 Nanosheets Doped with Sulfur on Reduced Graphene Oxide with Enhanced Photocatalytic Activity

نویسندگان

  • Weilin Wang
  • Zhaofeng Wang
  • Jingjing Liu
  • Zhu Luo
  • Steven L. Suib
  • Peng He
  • Guqiao Ding
  • Zhengguo Zhang
  • Luyi Sun
چکیده

A hybrid photocatalyst based on anatase TiO2 was designed by doping TiO2 with sulfur and incorporating reduced graphene oxide (TiO2-S/rGO hybrid), with an aim to narrow the band gap to potentially make use of visible light and decrease the recombination of excitons, respectively. This TiO2-S/rGO hybrid was successfully synthesized using a one-pot hydrothermal method via single-step reaction. The structure and morphology of the TiO2-S/rGO hybrid catalyst was carefully characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Its photocatalytic reactivity was evaluated by the degradation of methyl blue. The results showed that both the doping of sulfur and the introduction of rGO worked as designed, and the TiO2-S/rGO hybrid exhibited high photocatalytic activity under simulated sunlight. Considering both the facile and scalable reaction to synthesize TiO2-S/rGO hybrid, and its excellent photocatalytic performance, such TiO2-S/rGO hybrids are expect to find practical applications in environmental and energy sectors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Room Temperature Synthesis of N-doped Urchin-like Rutile TiO2 Nanostructure With Enhanced Photocatalytic Activity Under Sunlight

We report the synthesis of nitrogen-doped urchin-like rutile TiO2 nanostructure at room temperature without further heat treatment. The process was operated through hydrolysis of Ti(OC4H9)4 employing the direct amination of the product. The samples characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Raman spectroscopy and Brunaue...

متن کامل

Biomimetic layer-by-layer deposition assisted synthesis of Cu, N co-doped TiO2 nanosheets with enhanced visible light photocatalytic performance.

In this paper, a Cu, N co-doped TiO2 nanosheet with increased visible light photocatalytic activity was successfully synthesized using a biomimetic layer-by-layer deposition process. The polymer, branched-polyethyleneimine (b-PEI) was used as an induction agent for the hydrolysis of titanium bis(ammonium lactato)-dihydroxide (Ti-BALDH) as well as for a nitrogen resource, and the graphene oxide ...

متن کامل

Phosphotungstic acid supported on functionalized graphene oxide nanosheets (GO-SiC3-NH3-H2PW): Preparation, characterization, and first catalytic application in the synthesis of amidoalkyl naphthols

Grafting of 3-aminopropyltriethoxysilane (APTS) on graphene oxide (GO) nanosheets followed by reaction with phosphotungstic acid (H3PW12O40, denoted as H3PW) gave a new functionalized GO which was characterized using FT-IR, FESEM, EDX, EDX elemental mapping and ICP-OES techniques. The catalytic activity of this nanomaterial containing phosphotungstic counter-anion H2PW12O40¯ (H2PW) which was de...

متن کامل

Covalent functionalization based heteroatom doped graphene nanosheet as a metal-free electrocatalyst for oxygen reduction reaction.

Oxygen reduction reaction (ORR) is an important reaction in energy conversion systems such as fuel cells and metal-air batteries. Carbon nanomaterials doped with heteroatoms are highly attractive materials for use as electrocatalysts by virtue of their excellent electrocatalytic activity, high conductivity, and large surface area. This study reports the synthesis of highly efficient electrocata...

متن کامل

New insight into the enhanced visible light photocatalytic activity over boron-doped reduced graphene oxide.

Boron-doped reduced graphene oxide (B-RGO) synthesized by a facile one-step reflux route is able to exhibit significantly higher photocatalytic activity than non-doped RGO under visible light irradiation. New insights accounting for this photocatalytic activity improvement are discussed, which is distinctly different from the case of B-RGO nanoribbons under UV light irradiation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017